Realistic changes in seaweed biodiversity affect multiple ecosystem functions on a rocky shore.
نویسندگان
چکیده
Given current threats to biodiversity, understanding the effects of diversity changes on the functions and services associated with intact ecosystems is of paramount importance. However, limited realism in most biodiversity studies makes it difficult to link the large and growing body of evidence for important functional consequences of biodiversity change to real-world losses of biodiversity. Here, we explored two methods of incorporating realism into biodiversity research: (1) the use of two-, five-, and eight-species assemblages that mimicked those that we observed in surveys of seaweed biodiversity patterns on a northern California (USA) rocky shore and the explicit comparison of those assemblages to random assemblages compiled from the same local species pool; and (2) the measurement of two fundamental ecosystem functions, nitrate uptake and photosynthesis, both of which contribute to growth of primary producers. Specifically, we measured nitrate uptake rates of seaweed assemblages as a function of initial nitrate concentrations and photosynthetic rates as a function of irradiance levels for both realistic and random assemblages of seaweeds. We only observed changes in ecosystem functioning along a richness gradient for realistic assemblages, and both maximum nitrate uptake rates (V(max)) and photosynthetic light use efficiency values (alpha(p) = P(max)/I(K)) were higher in realistic assemblages than in random assemblages. Furthermore, the parameter affected by changes in richness depended on the function being measured. Both V(max) and alpha(p) declined with increasing richness in nonrandom assemblages due to a combination of species identity effects (for V(max) and overyielding effects (for both V(max) and alpha(p)). In contrast, neither nitrate uptake efficiency values (alpha(N) = V(max)/K(s)), nor maximum photosynthetic rates (Pmax) changed along the gradient in seaweed species richness. Furthermore, overyielding was only evident in realistic assemblages, and the parameters exhibiting overyielding, including V(max), alpha(N), P(max), and alpha(p), changed along a gradient in species richness. Our results suggest that in realistic assemblages of species (1) some functions may be maximized at low levels of species richness, and (2) it is not only diversity, per se, that is important for sustaining multiple ecosystem functions, but also the range of diversity values in an ecosystem.
منابع مشابه
The fate of the Arctic seaweed Fucus distichus under climate change: an ecological niche modeling approach.
Rising temperatures are predicted to melt all perennial ice cover in the Arctic by the end of this century, thus opening up suitable habitat for temperate and subarctic species. Canopy-forming seaweeds provide an ideal system to predict the potential impact of climate-change on rocky-shore ecosystems, given their direct dependence on temperature and their key role in the ecological system. Our ...
متن کاملUltraviolet radiation shapes seaweed communities
Stratospheric ozone depletion and the concomitant increase in irradiance of ultraviolet-B radiation (UVB) at the earth’s surface represent major threats to terrestrial and aquatic ecosystems. In costal rocky shore environments, seaweeds constitute a group of organisms of particular significance to ecosystem function. Thus, impairment of seaweed performance by UVB-exposure may result in severe c...
متن کاملAdditive effects of physical stress and herbivores on intertidal seaweed biodiversity.
Patterns in rocky intertidal seaweed biodiversity influence the resilience and functioning of these important primary producer communities. In turn, seaweed biodiversity patterns are the result of many ecological factors. We determined the influences of thermal and desiccation stress, herbivory, and nutrients on seaweed biodiversity on a northern California rocky shoreline. In a fully crossed d...
متن کاملFunctional consequences of realistic biodiversity changes in a marine ecosystem.
Declines in biodiversity have prompted concern over the consequences of species loss for the goods and services provided by natural ecosystems. However, relatively few studies have evaluated the functional consequences of realistic, nonrandom changes in biodiversity. Instead, most designs have used randomly selected assemblages from a local species pool to construct diversity gradients. It is t...
متن کاملEffects of eutrophication, grazing, and algal blooms on rocky shores
Eutrophication can profoundly change rocky shore communities. These changes often cause the replacement of perennial, canopy-forming algae such as Fucus spp. with annual, bloom-forming algae such as Enteromorpha spp. Grazing, however, can counteract eutrophication by eliminating the annual algae’s susceptible recruits. We examine these generalizations across large scales. We use replicated ‘‘bi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Ecology
دوره 94 9 شماره
صفحات -
تاریخ انتشار 2013